## Stoichiometry Class Problems \#2

1. According to the equation below, adding copper ( Cu ) to silver nitrate $\left(\mathrm{AgNO}_{3}\right)$ allows a chemical reaction to occur that produces silver ( Ag ) and copper nitrate $\left(\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right)$.

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{Ag}
$$

## A- Molecules to grams (Steps 1-4)

If $3.33 \times 10^{7}$ molecules of Cu are available, how many grams of silver nitrate $\mathrm{AgNO}_{3}$ would react with it?

B- Grams to atoms (Steps 1-4)
If 400.0 g of copper nitrate $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ was produced, how many Cu atoms must have reacted with the copper nitrate?

## C- Atoms to moles (Steps 1-3)

If $7.5 \times 10^{4} \mathrm{Ag}$ atoms are available, how many moles of silver nitrate $\mathrm{AgNO}_{3}$ would react with it?

## D- Moles to molecules (steps 1, 3 and 4)

If 3.0 moles of Cu were used in the reaction, how many molecules of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ would be produced?
2. Use the equation below to solve questions $A$ and $B$
$2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2} \rightarrow \mathrm{MgCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
A- If 700.0 g of water was produced, how many molecules of magnesium chloride $\left(\mathrm{MgCl}_{2}\right)$ must have reacted with the oxygen?

B- If $3.3 \times 10^{9}$ molecules of HCl are available, how many moles of water react with it?

## Mole and stoichiometry combination questions

1. 200.0 mL of NaI whose concentration is 2.0 M are reacted with $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ in order to obtain the precipitate $\mathrm{PbI}_{2}$. Calculate the mass of $\mathrm{PbI}_{2}$ obtained.

$$
2 \mathrm{NaI}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{PbI}_{2}+2 \mathrm{Na}\left(\mathrm{NO}_{3}\right)
$$

2. 75 mL of $\mathrm{BaCl}_{2}$ is used to produce $\mathrm{BaCrO}_{4}$. If 4.81 g of $\mathrm{BaCrO}_{4}$ is made, what is the concentration of the $\mathrm{BaCl}_{2}$ used? The following equation represents the reaction:

$$
\mathrm{K}_{2} \mathrm{CrO}_{4(a q)}+\mathrm{BaCl}_{2(a q)} \rightarrow \mathrm{BaCrO}_{4(\mathrm{~s})}+2 \mathrm{KCl}_{(a q)}
$$

3. How many mL of a 6.0 M solution of HCl are needed to react with 4.85 g of $\mathrm{NaHCO}_{3}$ ? The equation that represents the reaction follows.

$$
\mathrm{NaHCO}_{3}+\mathrm{HCl} \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

