Stoichiometry Class Problems #2

1. According to the equation below, adding copper (Cu) to silver nitrate ($AgNO_3$) allows a chemical reaction to occur that produces silver (Ag) and copper nitrate ($Cu(NO_3)_2$).

$$Cu + 2 AgNO_3 \rightarrow Cu(NO_3)_2 + 2 Ag$$

A- Molecules to grams (Steps 1-4)

If 3.33×10^7 molecules of Cu are available, how many grams of silver nitrate $AgNO_3$ would react with it?

B- Grams to atoms (Steps 1-4)

If 400.0 g of copper nitrate $Cu(NO_3)_2$ was produced, how many Cu atoms must have reacted with the copper nitrate?

C- Atoms to moles (Steps 1-3)

If 7.5×10^4 Ag atoms are available, how many moles of silver nitrate AgNO₃ would react with it?

D- Moles to molecules (steps 1, 3 and 4)

If 3.0 moles of Cu were used in the reaction, how many molecules of $Cu(NO_3)_2$ would be produced?

2. Use the equation below to solve questions \boldsymbol{A} and \boldsymbol{B}

2 HCl +
$$Mg(OH)_2 \rightarrow MgCl_2$$
 + 2 H₂O

- A- If 700.0 g of water was produced, how many molecules of magnesium chloride ($MgCl_2$) must have reacted with the oxygen?
- B- If 3.3×10^9 molecules of HCl are available, how many moles of water react with it?

Mole and stoichiometry combination questions

1. 200.0 mL of NaI whose concentration is 2.0 M are reacted with $Pb(NO_3)_2$ in order to obtain the precipitate PbI_2 . Calculate the mass of PbI_2 obtained.

2 NaI + Pb(NO₃)₂
$$\rightarrow$$
 PbI₂ + 2 Na(NO₃)

2. 75mL of $BaCl_2$ is used to produce $BaCrO_4$. If 4.81g of $BaCrO_4$ is made, what is the concentration of the $BaCl_2$ used? The following equation represents the reaction:

$$K_2CrO_{4\,(aq)}$$
 + $BaCl_{2(aq)}$ \rightarrow $BaCrO_{4(s)}$ + $2KCl_{(aq)}$

3. How many mL of a 6.0M solution of HCl are needed to react with 4.85g of $NaHCO_3$? The equation that represents the reaction follows.

$$NaHCO_3 + HCI \rightarrow NaCI + H_2O + CO_2$$